

HPCaaS with DEMO

Ákos Kovács Széchenyi István University (SZE)

Joint work with Z. Horváth (Head), B. Liszkai, Á. Kovács, T. Budai, Cs. Tóth (SZE)

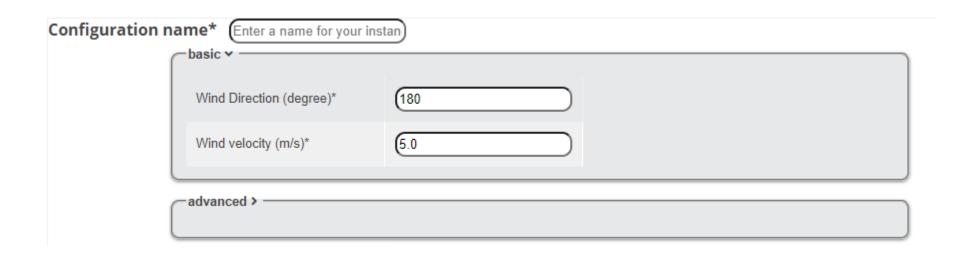
ENCCS Workshop

Agenda

- Two Main part
- 1. Simulating
- 2. Explanation

First let's do some simulation ©

- Download the blueprint
- http://sophora-192.man.poznan.pl/blueprints/
- Download uap-v2.1-enccs.yaml -> save as
- Or just copy the content of it


Uploading the Simulation

- Go to https://webint.hidalgo-project.eu
- Login with your user/pass (previously sent)
- Go to Settings/Manage Application
- Add a name to your application
- Select the file, and hit upload!

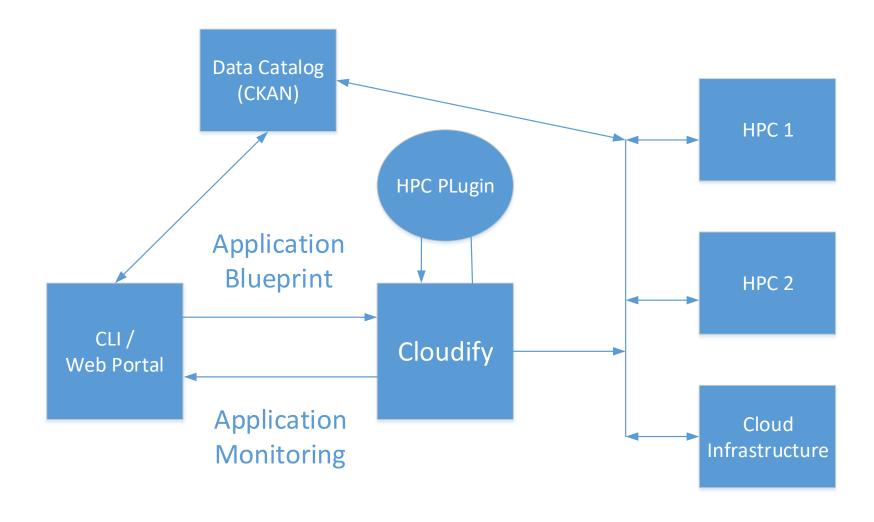
Configuring the Simulation

- Go to Experiments/Manage Instances
- Select your Application (uploaded)
- Add a name and save

Starting the simulation

- Go to Experiments/Execute
- Choose your application
- Choose your configuration
- Choose sophora-192.man.poznan.pl as HPC

Run Instance!



HPCaaS

- Goal is to reach more people with HPC application
- HPCaaS trough API, means it is possible to create web portal or CLI tools to manage HPC jobs/applications
- Cloudify with HPC plugin

HPCaaS High level Architeture

8

TOSCA file

- Topology and Orchestration Specification for Cloud Applications (TOSCA)
- "The idea behind the TOSCA standard is to render improvements in the deployment, termination, and any other management function of cloud applications."
- Describing workflows and input data, and a relation between them.

Application Blueprint

- YAML format (Human readable, less writable ©)
 - Strict whitespace rules
- Defining application inputs, files, datasets
 - Files to download
 - Online File edit
 - Lists
 - Strings
 - Checkbox (Boolean)
 - Number (int, float)

Application Blueprint II.

Defining workflow

- Add executabe commands, with input files/string defined
- Add possibility to use Module system for HPC (Loading modules)
- Define simulation steps and add dependencies between them, so all steps can be serialized or parallelized

HPC Applications – Singularity Container

- Each HPC has it's own ecosystem
- Different modules
- Different Operating system
- Different software versions:
 - Our code requires python 3.8, but the HPC has only 3.7 module
- You have to install your own dependecies -> time consuming

HPC Applications – Singularity Container

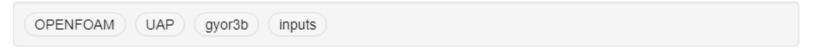
- Solution -> Containerize your application(s)
- Our singularity container contains:
 - OpenFOAM v2006
 - SUMO v1.6
 - Own tools based on JAVA
 - Own tools based on python
 - With bunch of python modules installed (ckanapi, numpy, scipy, etc.)
 - ECMWF polytope client

HPC Applications – Singularity Container

- Install all software into one ecosystem
- Only Singularity framework is needed to install system wide
- Singularity vs Docker
 - 1 image file vs fs layers
 - Host mode networking (performance)
 - Special interconnects works out-of-the-box
 - mobility

Data catalog

- Ckan data catalog
- Can be used trough API
- Store files or just the URL of the file
- Defining datasets
- Datasets, and Files can be tagged, for easy search
- Authentication with secret API key


Data catalog

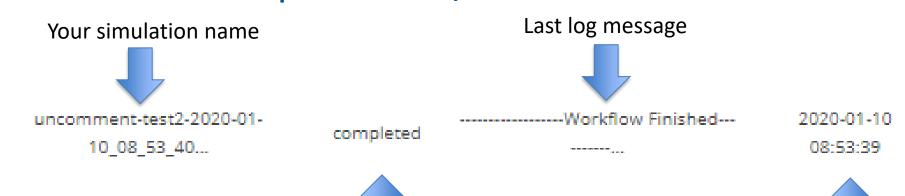
Extendable with plugins like Spatial information, and tags

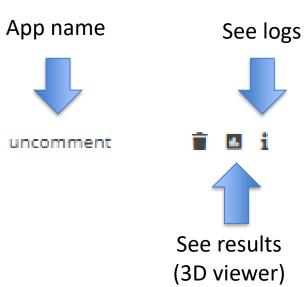
Dataset extent

gyor3b-openfoam-inputs

Data catalog

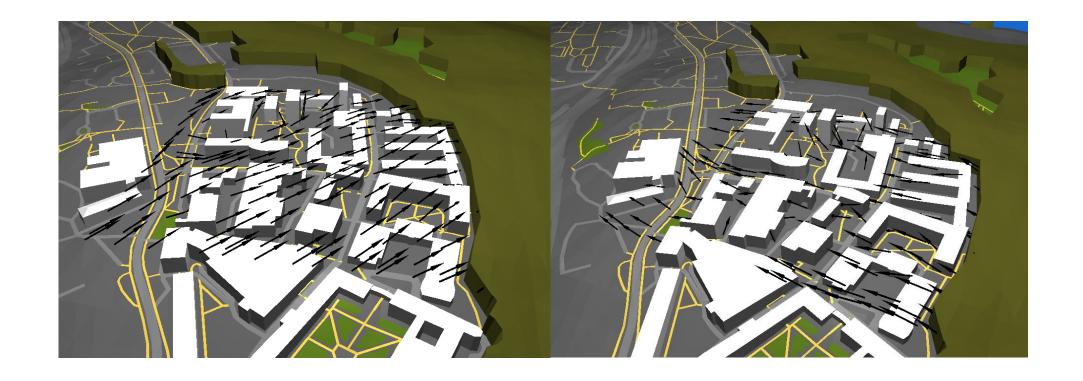
- Full API support, you can manage CKAN trough your application
 - Dataset generation
 - User modifications
 - Upload/Download files
 - Manage permissions
- CLI client (ckanapi) or python library




Check our simulation

Starting time

Go to Experiments/Dasboard


Status

Results with two different wind profile

THANK YOU!

QUESTIONS?

Ákos Kovács Széchenyi István University Egyetem tér 1. 9026 Győr, Hungary Email: kovacs.akos@sze.hu